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Abstract
Periodic bottlenecks play a major role in shaping the adaptive dynamics of natural and laboratory populations of asexual 
microbes. Here we study how they affect the ‘Extent of Adaptation’ (EoA), in such populations. EoA, the average fitness 
gain relative to the ancestor, is the quantity of interest in a large number of microbial experimental-evolution studies which 
assume that for any given bottleneck size (N0) and number of generations between bottlenecks (g), the harmonic mean size 
(HM = N0g) will predict the ensuing evolutionary dynamics. However, there are no theoretical or empirical validations for 
HM being a good predictor of EoA. Using experimental-evolution with Escherichia coli and individual-based simulations, 
we show that HM fails to predict EoA (i.e., higher N0g does not lead to higher EoA). This is because although higher g allows 
populations to arrive at superior benefits by entailing increased variation, it also reduces the efficacy of selection, which 
lowers EoA. We show that EoA can be maximized in evolution experiments by either maximizing N0 and/or minimizing g. 
We also conjecture that N0/g is a better predictor of EoA than N0g. Our results call for a re-evaluation of the role of popula-
tion size in predicting fitness trajectories. They also aid in predicting adaptation in asexual populations, which has important 
evolutionary, epidemiological and economic implications.
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Introduction

Population size is a key demographic parameter that affects 
several ecological and evolutionary processes including 
the rate of adaptation (Desai et al. 2007; Desai and Fisher 
2007; Gerrish and Lenski 1998; Lanfear et al. 2014; Samani 
and Bell 2010; Wilke 2004), efficacy of selection (Petit and 
Barbadilla 2009), organismal complexity (LaBar and Adami 
2016), fitness decline (Katju et al. 2015), repeatability of 
evolution (Lachapelle et al. 2015; Szendro et al. 2013; Vog-
will et al. 2016), etc. Interestingly though, what constitutes 

a useful measure of population size for predicting evolu-
tionary outcomes often depends on the ecological/evolution-
ary question being addressed and the population-genetics 
quantity in question (Charlesworth 2009). Consequently, 
it is crucial to use the relevant measure of population size 
while constructing or empirically validating any evolution-
ary theory.

Experimental evolution using asexual microbes has been 
one of the key tools in validating several tenets of evolution-
ary theory (Kassen 2014, reviewed in Kawecki et al. 2012). 
Most such studies deal with populations that face regular 
and periodic bottlenecks during their propagation (Kawecki 
et al. 2012). The absolute population size keeps changing 
regularly because of these periodic bottlenecks. Therefore, 
in order to make predictions and claims based on population 
size in such experiments, it is important to define a proper 
measure of population size depending upon the question of 
interest (Charlesworth 2009; Kawecki et al. 2012; Lanfear 
et al. 2014; Wang et al. 2016).

Previous theoretical studies have shown that the harmonic 
mean of population size over time acts as the measure of 
population size that can explain and predict the fixation 
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probabilities of beneficial mutations in such systems (Patwa 
and Wahl 2008; Wahl and Gerrish 2001). Specifically, if 
a population grows from size N0 to Nf via binary fissions 
within a growth phase, and is diluted back periodically to N0 
by random sampling at the end of the growth phase, then the 
relevant population-size measure for fixation probabilities 
is given by Ne ≈ N0*log2(Nf/N0) = N0g, where g refers to the 
number of generations between successive bottlenecks and 
N0g is the harmonic mean size (Lenski et al. 1991). From 
an evolutionary perspective, periodic bottlenecks play two 
opposite roles in such experiments. On the one hand, harsher 
bottlenecks (entailed by higher g) reduce the probability that 
a given beneficial mutation would fix due to sampling errors 
during the bottleneck. On the other hand, higher values of 
g also imply an increase in Nf, which causes an increase in 
mutational opportunities (binary fissions) during exponential 
growth (Wahl et al. 2002). This is expected to increase the 
total supply of mutations that would survive drift, which in 
turn should increase the raw material available for evolu-
tion. It has been predicted that exponential growth between 
N0 and Nf influences fixation probabilities more than the 
elimination by sampling (Heffernan and Wahl 2002). More 
nuanced and complex measures of population size (Campos 
and Wahl 2009, 2010) also suggest that adaptation rates in 
terms of fixation probabilities would have a positive rela-
tionship with N0 and g, the two population size parameters 
amenable to experimental manipulation.

Unfortunately, most experimental evolution studies with 
serially bottlenecked asexual populations do not focus on 
the fixation probabilities of beneficial mutants. Instead, 
they are interested in the average amount of fitness gained 
with respect to the ancestor at a given time (we call this 
quantity the extent of adaptation, EoA) during the course 
of evolution (De Visser and Rozen 2005; Desai et al. 2007; 
Lachapelle et al. 2015; Lenski et al. 1991; Rozen et al. 
2008; Samani and Bell 2010). Several experimental stud-
ies, dealing with quantities akin to EoA for periodically 
bottlenecked asexual populations, have used the harmonic 
mean (= N0g) for quantifying the evolutionarily relevant 
(i.e., predictive of the magnitude of evolutionary response) 
population size (De Visser and Rozen 2005; Desai et al. 
2007; Lachapelle et al. 2015; Lenski et al. 1991; Rozen 
et al. 2008; Samani and Bell 2010). However, to the best 
of our knowledge, there is no theoretical basis or empiri-
cal justification (Raynes et al. 2014) for this usage of the 
harmonic mean. Here we use a combination of agent-based 
simulations and long-term evolutionary experiments using 
Escherichia coli to investigate the interplay of N0 and g 
in shaping the EoA of asexual populations. Since the har-
monic mean has been widely used by experimentalists in 
the context of EoA-like quantities, we begin by testing the 
suitability of the harmonic mean as a predictor of EoA. We 
show that populations with similar values of N0g can have 

markedly different EoA trajectories, and this result applies 
to both real (bacterial) as well as simulated populations. 
Secondly, we demonstrate that although increasing the 
value of g (making the periodic bottleneck harsher) pro-
motes adaptation through an increased supply of variation, 
it also reduces the efficacy of selection which impedes 
adaptation by restricting the spread of large-effect benefi-
cial mutations. When these two opposing aspects of bot-
tlenecks are considered together, counterintuitively, EoA 
turns out to have a negative relationship with g. Thirdly, 
we show that populations with similar harmonic mean 
(= N0g) can not only have different fitness trajectories 
but can also differ markedly in terms of how frequency-
distribution of fitness amongst individuals changes during 
adaptation. Finally, we show that, for a given mutation 
rate, N0/g can be a better predictor of EoA trajectories, 
i.e., populations with similar N0/g have similar fitness tra-
jectories and populations with higher N0/g adapt faster. 
Our findings thus introduce a new way of thinking about 
the relationship between population size and adaptive 
trajectories.

Our approach differs from previous studies in two 
important ways. First, unlike many studies (Campos and 
Wahl 2009, 2010; Heffernan and Wahl 2002; Wahl and 
Gerrish 2001) we focus on how EoA (and not long-term 
fixation probabilities) is shaped by bottleneck size (N0) and 
bottleneck ratios (N0/Nf). This makes our study directly 
relevant to a rich body of microbial experimental evolution 
literature (De Visser and Rozen 2005; Desai et al. 2007; 
Lachapelle et al. 2015; Lenski et al. 1991; Rozen et al. 
2008; Samani and Bell 2010, reviewed in Kawecki et al. 
2012). Second, many previous theoretical studies on peri-
odically bottlenecked systems (where Nf = N02g), assume 
that the culture volume (and therefore Nf) is a constant, 
and then go on to explore what value of N0 or g leads to 
the minimum loss of variation during bottlenecks and/or 
in the long run (Campos and Wahl 2009, 2010; Heffernan 
and Wahl 2002; Wahl et al. 2002; Wahl and Gerrish 2001; 
Wahl and Zhu 2015). In our simulations, we remove this 
restriction and seek to compare loss of variation in those 
cases where both N0 and Nf can be different (e.g. between 
a population grown in 50 ml of medium versus one grown 
in (say) 1 ml of medium). Clearly, it is possible to have two 
populations with very different N0 and Nf values that can 
nevertheless have similar values of N0g. One of the ques-
tions that we investigate is whether such populations have 
similar fitness trajectories or not. Thus, our results make it 
possible to compare the expected EoA across experimen-
tal studies that employ similar environments but different 
culture volumes, which is a rather common scenario in 
experimental evolution studies (Lachapelle et al. 2015; 
Raynes et al. 2012, 2014; Rozen et al. 2008; Samani and 
Bell 2010).
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Methods

Experimental Evolution, Assays and Statistical 
Analysis

Here we present a brief description of the experimental 
protocol, relegating the details to Supplementary Methods. 
Our primary aim was to investigate if a commonly used 
measures of population size in experimental evolution, 
namely harmonic mean (N0g), could predict EoA trajec-
tories. We also wanted to see if populations with similar 
values of Nf have similar EoA. To this end, we experimen-
tally evolved three different population regimens (LL, SL, 
and SS) in Nutrient Broth containing a sub-lethal cocktail 
of three antibiotics (Norfloxacin, Rifampicin and Strep-
tomycin) for ~ 380 generations in batch culture. The first 
letter in the name refers to the harmonic mean size and 
the second letter refers to Nf; L means ‘large’ and S means 
‘small’. Each regimen consisted of 8 independently evolv-
ing replicate populations, all of which were started from 
a single E. coli MG 1655 colony. The three population 
regimens were propagated at different bottleneck sizes: 
LL faced lenient bottlenecks (1/10), whereas SS (1/104) 
and SL (1/106) experienced much harsher bottlenecks. 
LL and SL were grown at larger culture volumes (100 ml, 
culture in flasks) than SS (1.5 ml, culture in 24 well-
plates). Thus, in terms of Nf, LL = SL ≫ SS but in terms 
of N0g LL ≫ SL = SS (see Table S1 for the values of these 
parameters). The EoA trajectories of the three population 
types were reconstructed by assaying the maximum pop-
ulation-wide growth rates (R) and carrying capacities (K) 
of each replicate at different time-points during evolution 
following standard protocols (Karve et al. 2015, 2016), 
the details of which can be found in Supplementary Meth-
ods. K of a population was defined as the maximum OD 
value attained over a period of 24 h (the highest value in 
the sigmoidal growth curve) (Karve et al. 2016; Novak 
et al. 2006). R was estimated as the maximum slope of the 
growth curve over a running window of four OD readings 
(each window spanning 1 h) (Karve et al. 2015, 2016; 
Vogwill et al. 2016).

To analyze the data, we performed separate repeated 
measures ANOVA for K and R. “Regimen-type” (LL/SL/
SS) was treated as the categorical factor, and TIME (nine 
time-points) as the repeated measures factor. We also 
included an interaction of Regimen-type and TIME in our 
model to determine if the fitness trajectories of the regimes 
were significantly different from each other. Furthermore, 
to compare the fitness values at each time point, we used 
a nested-design ANOVA with “regimen-type” (SS, SL or 
LL, fixed factor) and “replicate-line” (1–8, random factor, 
nested in regimen-type). We used Holm–Šidàk correction 

(Abdi 2010) for controlling the family-wise error rates. 
For all ANOVAs where there was a significant effect of 
“Regimen-type” after the Holm–Šidàk correction, we used 
Tukey’s HSD to compare pairwise differences between LL, 
SL, and SS (See Supplementary Methods for details and 
rationale).

Simulations of Microbial Evolution

Any difference between the three regimens in our experi-
ment can, in principle, be due to some idiosyncratic prop-
erties of the experimental organism (E. coli) or potential 
differences between the selection environments in flasks and 
plates. In order to account for that possibility and enhance 
the generalizability of our results, we used an individual 
based model to simulate bacterial growth under resource-
limited conditions (Wahl et al. 2002). Except for differences 
in the amount of resources, our model contained no other 
parameters specific to E. coli or related to differences in 
culture conditions. Thus, in terms of differences between 
the EoA of the regimens, if the model output matched the 
empirical observations then our results were likely to be 
applicable for other asexual systems. Treating our experi-
ment as a case-study, we used our model to investigate if our 
results were generalizable.

Our simulations start with a nearly clonal distribution 
of fitness effects. In our model, an individual bacterium 
was characterized by three principal parameters: efficiency, 
threshold, and body-mass. The simulation (coded in the 
C programming language) began with a fixed amount of 
resources available in the environment, utilized by the 
bacteria for growth. A typical individual was represented 
by an array that specified three principal parameters: (1) 
bodymass, (2) efficiency, and (3) threshold. Efficiency and 
threshold were the only two evolvable parameters. Bacteria 
consumed resources in an iterative and density-dependent 
manner. The parameter Bodymassi of the ith individual rep-
resented how big that individual was during a given iteration. 
Its efficiency (K_effi) specified how much food it assimilated 
per iteration. If population size/ K_effi < 1, 10 (1 − (popula-
tion size/ K_effi)) units were added to Bodymassi. Other-
wise, Bodymassi remained unchanged. Bodymassi increased 
with cumulative assimilation. When Bodymassi becomes 
greater than or equal to thresi (its threshold parameter), the 
individual i underwent binary fission and divided into two 
equally sized daughter individuals. Each fission event had 
a fixed probability of giving rise to mutations based on a 
mutation rate that remained constant for all individuals in 
the population. K_effi and thresi mutate independently, and 
were the only two parameters that could undergo mutation. 
The mutated value was drawn from a static normal distri-
bution with the frequency of deleterious mutations being 
much higher than that of beneficial mutations, which is in 
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line with experimental observations (see Table S3; Kassen 
and Bataillon 2006; Eyre-Walker and Keightley 2007). The 
distribution of mutational effects remained fixed throughout 
the simulation (Kassen and Bataillon 2006) due to which, 
EoA was expected to eventually approach a plateau. When 
the population ran out of resources (once the amount of 
body-mass accumulated per unit time by the population went 
below a pre-decided threshold so that the sigmoidal curve 
reached a plateau), it was sampled according to the sam-
pling ratio being studied. The above process was repeated for 
400 generations, where each generation represented twofold 
growth in population size (see Supplementary Methods for a 
more detailed description of the model). We also checked if 
our model met several intuitive theoretical predictions that 
had not been coded directly (see Supplementary Data (SD2); 
also see Figs. S1, S2, and S3).

Density-dependent growth, clonal interference, the 
presence of deleterious mutations, the presence of vari-
able fitness effects of mutations, etc. are some key features 
that are instrumental in shaping the adaptive dynamics of 
periodically bottlenecked asexual populations (Patwa and 
Wahl 2008; Sniegowski and Gerrish 2010). Unfortunately, 
the complex interactions of so many features are difficult 
to capture in analytical models (Sniegowski and Gerrish 
2010). Consequently, previous theoretical studies have been 
forced to make simplifying assumptions like the absence 
of deleterious mutations (Desai and Fisher 2007; Wahl and 
Gerrish 2001), constancy of beneficial mutational effects 
(Desai and Fisher 2007), constancy of Nf (Campos and Wahl 
2009, 2010; Wahl and Gerrish 2001; Wahl and Zhu 2015), 
the presence of discrete generations (Campos and Wahl 
2009, 2010; Desai and Fisher 2007), etc. (see Table S2 for 
details). Our model avoids these simplifying assumptions, 
which might explain why some of the features captured by 
our model have not been reported earlier. Moreover, our 

study is in the context of EoA, while most of the earlier 
studies have investigated fixation probabilities.

Results

Harmonic Mean Failed to Predict and Explain 
the EoA Trajectories of Experimental Populations

Repeated measures ANOVA on all three regimens indi-
cated a significant Regimen-type × TIME interaction for 
both K (F16, 168 = 5.72; p < 0.000001) and R (F16, 168 = 7.306; 
p < 0.000001). However, in principle, this interaction could 
be driven by the fact that the LL populations had a much 
larger increase in K and R compared to the SL and SS popu-
lations. Since our primary interest was to check whether the 
SL and SS populations differed in terms of these two fitness 
measures, we performed the repeated measures ANOVA 
for only these two regimens and again found a significant 
Regimen-type × TIME interaction for both K (F8, 112 = 2.070; 
p = 0.0446) and R (F8, 112 = 3.594; p = 0.000948). Since the 
interaction term was significant, we chose not to interpret 
the main effects of regimen-type or TIME.

Individual ANOVAs showed that the EoA of SS was 
greater than that of SL at 5/6 and 4/5 time-points which had 
significant difference in terms of K (Fig. 1a) and R (Fig. 1b). 
The p-values and the F-values (with corresponding df) for 
each time-point for K and R are presented in Tables S4 and 
S5 respectively. Thus, particularly during the last two-thirds 
of the evolution experiment, the EoA of SS was consistently 
higher than that of SL. The effect sizes [Cohen’s d (Cohen 
1988)] of EoA differences between SL and SS were found 
to be either medium or large (with the majority being large 
effects; see Table S6) for several points on the EoA trajec-
tory. Thus, similar harmonic mean can give rise to fairly 

Fig. 1   Experimental EoA trajectories in terms of carrying capacity 
and maximum growth rate. a EoA of carrying capacity (K). b EoA of 
maximum growth rate (R). Data points show mean ± SEM for eight 
replicates. Asterisk refers to cases when all three pairwise differ-
ences (LL–SL, LL–SS, and SL–SS) are significant (Tukey post hoc 

p < 0.05). # refers to significant difference across LL–SL and LL–SS, 
but not SL–SS (see Tables S4 and S5). SS and SL have markedly dif-
ferent adaptive trajectories despite having similar harmonic mean 
population sizes
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different adaptive trajectories. This observation is consistent 
with recent empirical findings that question the validity of 
harmonic mean as an evolutionarily relevant population size 
(Raynes et al. 2014). Surprisingly, SS had a larger overall 
EoA than SL despite having lower Nf. Interestingly, despite 
having similar Nf, LL typically had much larger extent of 
adaptation than SL, which is explainable by the fact that the 
latter regimen suffered more severe bottlenecks. This shows 
that similar Nf does not lead to similar extents of adaptation 
if the bottleneck ratios are different.

In summary, the harmonic mean failed to predict the 
adaptive trajectories of our experimental populations as, 
in spite of having similar values of N0g, the SL and SS 
regimens had markedly different adaptive trajectories for K 
(Fig. 1a) as well as R (Fig. 1b).

Simulations Also Revealed That the Harmonic Mean 
Fails to Predict Adaptive Trajectories

We simulated evolution in populations with identical har-
monic mean sizes but with different values of N0 and g, 
such that the product (N0g) remained constant. If the har-
monic mean (= N0g) were a good predictor of how much a 
population is expected to adapt, then these three treatments 
were expected to show similar EoA. This was not found 
to be the case for both K (Fig. 2a) and R (Fig. 2b), which 
was consistent with our experimental observations of EoA 
trends in SL and SS (Fig. 1; also see Supplementary Meth-
ods and Fig. S4). The simulated populations with identical 
harmonic mean sizes (XX′, SS′, and SL′) were also found 
to be remarkably different in terms of the adaptive increase 
in average efficiency of individuals (Fig. S4a). Interest-
ingly, populations with similar harmonic mean were also 
found to differ in terms of the frequency distributions of 

the efficiency parameters amongst their constituent indi-
viduals (Fig. S5). To determine why N0g could not explain 
EoA trajectories, we determined how EoA varied with N0 
and g, independently.

EoA Varied Positively with N0 but Negatively with g

If N0g were a good measure of the population size that has 
a positive relationship with EoA, then increasing either 
N0 or g or both should lead to greater EoA. We tested this 
intuitive prediction via simulations using several combi-
nations of N0 and g, spanning four orders of magnitude 
for both N0 and the sampling ratio (N0/Nf). Although EoA 
was found to increase with greater N0 (Fig. 3a, also see 
Fig. S6), the relationship between EoA and g turned out to 
be negative (Fig. 3b; also see Fig. S7) which was reflected 
in terms of both individual-level (Fig. 3b—in terms of 
efficiency) and population-level (Fig. S8—in terms of R) 
fitness parameters. The latter result implied that larger 
values of Nf impeded adaptation in populations when the 
population size during the bottleneck (N0) was held con-
stant. The nature (sign) of this relationship between EoA 
and g was found to be robust to changes in mutation rate 
over a 100-fold range in our simulations (Fig. S10).

A negative relationship between the extent of adapta-
tion and g is particularly surprising because, in popula-
tions with similar N0, increase in g is expected to lead to 
an increase in the available variation. All else being equal, 
this should have led to greater adaptation. Since that was 
not the case, we went on to check if these slowly adapting 
populations (with similar N0 but higher g) were limited, 
qualitatively and/or quantitatively, by the availability of 
variation.

Fig. 2   Simulations: adaption in three populations with similar har-
monic mean size. Data points show mean EoA ± SEM for eight rep-
licates. a Adaptation in terms of normalized carrying capacity (K). b 
Adaptation in terms of normalized maximum growth rate (R). XX′, 
SS′ and SL′ had similar harmonic mean sizes and represent lenient, 

medium and harsh bottlenecks with N0 ≈ 3.6 × 103, 1.8 × 103
, 9 × 102 

and bottleneck ratio of 1/10, 1/102, 1/104 respectively. These simula-
tions suggest that populations with similar harmonic mean size can 
have markedly different EoA trajectories
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The Quantitative Availability of Beneficial Traits 
Could Not Explain Why EoA Varied Negatively with g

To determine why the extent of adaptation varied negatively 
with g, we probed population regimens that had similar start-
ing population size (N0) after the first bottleneck but also had 
g values of 3.32 and 13.28 respectively (SM1 and SM4), 
where SM refers to sampling ratio, expressed in terms of 
log(10) (see Figs. 4, 5). SM1 grew to a final size of 10N0 in 
one growth phase (i.e., before bottleneck), while SM4 grew 
to 104N0. Consequently, SM1 faced a periodic bottleneck of 
1/10 whereas SM4 was sampled 1/104. Since SM4 experienced 
approximately 278 times more fission events than SM1 per 

evolutionary generation, the former was expected to undergo 
more mutations and consequently show more variation. More-
over, SM4 was also expected to arrive at very large-effect ben-
efits that were so rare that the probability of SM1 stumbling 
upon them was vanishingly low due to its lower mutational 
supply. As expected, compared to SM1, SM4 had a greater 
within-population coefficient of variation in terms of efficiency 
values (Fig. 4) and therefore was not limited by the supply of 
variation. To better understand the contributions of pheno-
types of different magnitudes to the extent of adaptation, we 
classified the phenotypes into 50 discrete static classes. We 
found that SM4 also had a continuous access to highly fit geno-
types (Fig. S11a) that were inaccessible to SM1 throughout 
the simulations. On the basis of these observations, the extent 
of adaptation can be expected to vary positively with g and 
thus SM4 was expected to be fitter than SM1 at a given point 
of time in general. However, counterintuitively, SM4 had a 
consistently lower extent of adaptation than SM1 (Fig. 4). Evi-
dently, harsher periodic sampling impeded adaptation despite 
resulting in increased substrate for selection. We also found 
that although higher Nf allowed SM4 to arrive at extremely 
rare mutations with very large benefits, these mutations failed 
to survive the harsh periodic bottlenecks by rising to large 
enough frequencies (Fig. S12a). In other words, SM4 typi-
cally wasted the best mutation explored by it but SM1 almost 
always conserved it. This explains why arriving at these rare 
mutations with very large benefits did not make SM4 adapt 
more than SM1 in a sustained manner. However, this does not 
explain why the extent of adaptation of SM4 was consistently 
lower than that of SM1.

The Negative Relationship Between EoA and g Can 
Be Explained in Terms of the Efficacy of Selection

The efficacy of selection in eliminating deleterious muta-
tions and spreading beneficial ones is an important factor 

Fig. 3   Simulations: the relationship of EoA (expressed in terms of 
efficiency) with N0 and g. Data points show mean ± SEM; eight rep-
licates. The populations shown in a had the same bottleneck ratio 
(1/102) but different bottleneck sizes (= N0). EoA varies positively 
with N0. On the other hand, the populations shown in b had identi-

cal bottleneck size (= N0) but different bottleneck ratios reflected by 
different values of g. Bottleneck ratios: BN1: 1/10 (g = 3.32); BN2: 
1/102 (g = 6.64); BN3: 1/103 (g = 9.96); BN4:1/104 (g = 13.28). EoA 
varies negatively with g. Also see Figs. S6, S7 and S8

Fig. 4   Simulations: trajectories of efficiency in terms of across-
population mean and within-population coefficient of variation. The 
within-populations coefficient of variation (CV) was computed for 
each replicate population across its constituent individuals using 
discrete frequency distributions. The error bars represent SEM 
(eight replicates). Both SM1 and SM4 had similar bottleneck size 
(N0 ≈ 900). SM1 experienced a periodic bottleneck of 1/10 whereas 
SM4 experienced a periodic bottleneck of 1/104. SM4 had a consist-
ently lower EoA than SM1 despite having consistently more variation
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that influences the increase of the extent of adaptation. We 
quantified the inefficacy of selection in increasing EoA 
using the Genetic Load, which was defined as: Genetic 
Load = (Best Efficiency − Average Efficiency)/Best Efficiency 
(Crow 1958; Rice 2004). The term “Best Efficiency” refers 
to the highest efficiency value that succeeds in surviving 
the bottleneck. As discussed earlier, the magnitudes of the 
highest efficiency values explored by SM4 populations 
are much greater than those explored by SM1 (Fig. S11a). 
However, these high-fitness phenotypes of SM4 typically 
have such low frequencies that they almost always fail to 

survive bottlenecks and thus do not contribute significantly 
to the overall extent of adaptation (Fig. S12a). Therefore, we 
defined the genetic load only in terms of the phenotypes that 
survived the bottlenecks. We found that the Best Efficiency 
(after bottlenecks) for SM1 was very similar to that of SM4 
(Fig. S12b). We note here that the phenotypes that are fit-
ter than the wild type but less fit than the best phenotype 
also contribute to the genetic load. Thus, consistently higher 
genetic load entails lower contribution of the best pheno-
type to the EoA. Furthermore, if these best phenotypes (with 
respect to which genetic load is defined) are similar across 

Fig. 5   The efficacy of selection in SM1 was more than that in SM4. 
a SM1 consistently experienced a much lower genetic load than 
SM1 [the error bars represent SEM (eight replicates)]. b The lagging 
chunk was the major contributor to the Extent of Adaptation (EoA) in 
SM4 but not in SM1 [the error bars represent SEM (eight replicates)]. 
This also means that the contribution of the nose to the EoA [which 
equals (1 − contribution of the lagging chunk)] in SM1 was much 
more than that of the lagging chunk. c, d Schematic representations 
of the distribution of efficiency across individuals during adaptation 

during the initial phases of evolution (before generation 80). Due 
to the high efficacy of selection in SM1, the majority of individuals 
were found in the nose (c). On the other hand, a relatively low effi-
cacy of selection due to harsher bottlenecks in SM4 resulted in most 
individuals being found in the lagging chunk (please refer to the text 
for more details) (d). e, f During the later phases of evolution (around 
generation 360), the contributions of the nose to the overall EoA 
became relatively similar in SM1 and SM4
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populations being compared, consistently lower contribution 
of the best phenotype to EoA would in turn entail slower rise 
of the latter.

SM4 consistently experienced a heavier genetic load 
than SM1, particularly during the initial phases of evolu-
tion (Fig. 5a). This genetic load was constituted largely by 
phenotypes that are fitter than the wild type ancestor but less 
fit than the best phenotype (Fig. S13). We labelled the top 
five occupied fitness classes as the “nose” (sensu Desai and 
Fisher 2007) and all the classes inferior to the nose as the 
“lagging chunk.” During the early phases of evolution, the 
relative contribution of the lagging chunk to the extent of 
adaptation was much higher in SM4 than in SM1 (Fig. 5b). 
In other words, the nose accounted for most of the EoA in 
SM1 but not in SM4 (shown schematically in Fig. 5c, d). 
Thus, compared to SM1, the best phenotype of a typical 
SM4 population needed to outcompete many more pheno-
types (present in sizable frequencies) that were superior to 
the wild-type but inferior to itself. This suggests that the 
efficacy of selection was higher in SM1 than in SM4, which 
in turn explains the faster increase of EoA in the former. 
As selection proceeded, the genetic load of SM4 reduced 
greatly by generation 360 (Fig. 5a). This resulted in similar 
contributions of the respective noses to the overall EoA in 
SM1 and SM4 (Fig. 5e, f).

The above observations suggest that during the early 
phases of evolution, populations with higher g (here SM4) 
can face greater impediment (genetic load), which translates 
into a reduced EoA.

N0/g is a Better Predictor of EoA than N0g

Since our simulations suggested that the extent of adapta-
tion is positively related to N0 and negatively related to g, 
we went on to test if N0/g is a better predictor of adaptive 
trajectories than N0g. This turned out to be the case, not 
only in our simulations (Fig. 6; also see Fig. 2, S14), but 
also for our experiments. The N0/g values of LL, SS and SL 
populations were approximately 3.01 × 109, 1.13 × 104, and 
5.02 × 103, respectively. This led to a predicted EoA trend 
of LL > SS > SL, which was observed in the experiments in 
terms of both the fitness measures (K and R) (Fig. 1).

Discussion

Overview of the Main Results and What They 
Suggest

Most experimental studies with periodically bottlenecked 
asexual populations have used the harmonic mean as the 
measure of population size (De Visser and Rozen 2005; 
Desai et  al. 2007; Lachapelle et  al. 2015; Lenski et  al. 

1991; Rozen et al. 2008; Samani and Bell 2010; Vogwill 
et al. 2016) to investigate quantities akin to the EoA. Desai 
et al. (2007) stated that the enhancement in mean population 
fitness with respect to time (a quantity equivalent to EoA) 
depends upon the harmonic mean of the population size in 
such populations (Desai et al. 2007). However, there has 
been no empirical or theoretical test for the validity of the 
harmonic mean as a predictor of the extent of adaptation. 
Therefore, as a starting-point, we performed evolutionary 
experiments on E. coli populations to test if the harmonic 
mean of population size (= N0g) can predict EoA. Our exper-
iments revealed that N0g does not predict EoA (Fig. 1). This 
observation could be interpreted in two ways. Either there 
was something wrong with harmonic mean in terms of pre-
dicting EoA, or there were some idiosyncratic properties of 
our experimental system (e.g. different kinds of containers) 
that masks the relationship between harmonic mean and 
EoA. Apart from their different numbers (whose effect we 
study here) and the fact that the LL/SL treatments are grown 
in flasks while the SS treatment is grown in tissue culture 
plates, there are no differences between the three treatments, 
and hence the corresponding selection pressures. Since they 
are grown with continuous shaking, aeration is unlikely to 
be a significant issue. To account for the possibility that 
some idiosyncrasies of our experiments were responsible 
for our results, and to test if the results of our experimental 
case-study were generalizable, we simulated the adaptive 
evolution of asexual populations that grow via fission. For 
this purpose, we used a very generic model that did not con-
tain any E. coli specific functions or parameters. The idea 
here was that if the outcomes of the simulations matched 
the experiments, we could be reasonably confident that the 

Fig. 6   Simulations: EoA trajectories in terms of K. Populations with 
similar N0/g (LBbar and HB) match more closely in terms of mean 
adaptive trajectories than populations with similar N0g (LB and HB). 
LB: N0 ≈ 3600, bottleneck ratio: 1/10; HB: N0 ≈ 900, bottleneck ratio: 
1/104; LBbar: N0 ≈ 225, bottleneck ratio: 1/10
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experimental results are not due to some peculiarities of the 
E. coli system or experimental protocols. The simulations 
also revealed no association between N0g and EoA (Fig. 2) 
which strengthened the first interpretation that N0g is not a 
good predictor of EoA.

It must be added here that conventionally, the harmonic 
mean has been treated as an evolutionarily relevant meas-
ure of population size only in terms of neutral mutations 
(Charlesworth 2009; Kimura 1983). However, at least in 
terms of fixation probabilities of beneficial mutations, it 
has been shown that population size measures similar to the 
harmonic mean can act as the relevant measure of population 
size (Campos and Wahl 2009, 2010; Heffernan and Wahl 
2002).

To investigate why N0g is an inappropriate measure for 
predicting EoA, we used our model to test how EoA varied 
with N0 and g independently, and found the counter-intuitive 
result that EoA varies negatively with g (Fig. 3b and S7). 
To explain this result, we probed the composition of our 
simulated populations as they evolved (Figs. 4, 5). We found 
that g plays a dual role in terms of determining EoA. Higher 
values of g positively affect EoA by increasing the supply 
of variation, but negatively affect EoA by decreasing the 
efficacy of selection, as reflected by a consistently greater 
genetic load. We found that this second effect of g on EoA 
overshadows the first, something that is underappreciated 
in the empirical literature. Since N0 and g have positive 
and negative relationships respectively with EoA, intuition 
suggests that a good predictor of EoA should also do the 
same. One such expression (of the many possible, taking 
into account that in most evolutionary experiments N0 ≫ g) 
is N0/g. N0/g indeed turns out to be a better predictor of 
EoA in our simulations than N0g (Fig. 6 and S14). We show 
below how both measures, (i.e. N0g and N0/g) could lead to 
similar predictions about EoA under certain circumstances, 
and why is it important to consider the cases when this cor-
respondence breaks down.

The rest of the discussion elaborates the various insights 
mentioned above (and some more) and their consequences.

Periodic Bottlenecks Lead to Increased Variation 
But Reduced Adaptation

The growth of many natural asexual populations is punctu-
ated by episodic bottlenecks caused by, for example, abrupt 
dissociation from hosts or spread of infections across hosts 
(reviewed in Abel et al. 2015), etc. Moreover, periodic sam-
pling during sub-culturing is a common feature of most 
asexual populations propagated during experimental evolu-
tion studies (Kawecki et al. 2012; Lenski et al. 1991). There-
fore, it is important to appreciate the complex role played by 
periodic bottlenecks in the evolutionary dynamics of asexual 
populations.

Most experimental evolution studies with asexual 
microbes are started with either genetically uniform/clonal 
replicate populations or a mixed inoculum of relatively small 
number of genotypes. In such populations, de novo benefi-
cial mutations are the principal basis of adaptation (Barrick 
et al. 2009; Kawecki et al. 2012). That is why populations 
that experience greater number of binary fissions per gen-
eration are expected to generate more de novo beneficial 
variation and thus, to have a higher extent of adaptation. 
Now, the number of binary fissions per generation is given 
by N0(2g − 1)/g. This quantity varies positively with the num-
ber of generations before a bottleneck (g) and also with the 
size of the population at the bottleneck (N0). Thus, all else 
being equal, the harmonic mean (≈ N0g) is expected to be a 
good predictor of the extent of adaptation.

However, the above line of reasoning disregards the fact 
that there can be a significant loss of variation during peri-
odic bottlenecks. As g increases, N0 represents a smaller 
fraction of the final population size (Nf) before bottleneck, 
which in turn increases the chances of loss of variation. For 
example, assume that there are two bacterial populations 
that have the same value of N0 (= 102) but g values of 3.32 
and 13.28, leading to Nf values of 103 and 106 respectively 
(Lenski et al. 1991). For a given value of N0, increasing the 
value of g decreases the probability that a new beneficial 
mutation would survive the bottlenecks (Wahl et al. 2002; 
Wahl and Zhu 2015). All else being equal, this should reduce 
the extent of adaptation.

Thus, increasing g has opposite effects on supply and 
survival of mutations in a population. Several theoreti-
cal studies have investigated which of these two effects is 
more important for adaptive evolution in asexual popula-
tions. For example, it has been suggested that increasing g 
increases the probability of fixation of a beneficial mutation 
(Heffernan and Wahl 2002). This implies that the positive 
relationship between g and mutational supply can overcome 
the negative effect of increasing g on adaptation. Other 
theoretical studies have also shown a positive relationship 
between adaptively relevant population size and the prod-
uct N0g (Campos and Wahl 2009, 2010). Unfortunately, this 
rich body of theoretical predictions are not in the context of 
quantities (like EoA) that are experimentally tractable, which 
was one of the motivations behind this study.

Our experiments (Fig. 1) and simulations (Fig. 2) showed 
that populations with similar values of N0g can have very 
different adaptive trajectories, suggesting that N0g is not 
a good predictor of EoA. Moreover, our simulations pre-
dicted the relationship between EoA and g to be negative 
(Fig. 3b and S7) and not positive. These two results disagree 
with a rather large body of existing literature, as outlined 
above. One way by which this can happen is if our model 
incorporates some atypical assumptions which lead to the 
observed counter-intuitive results. However, if that were to 
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be the case, then one would also expect our model to show 
other unintuitive results. Therefore, we first investigated 
whether various other predictions of our model matched 
those from the literature. Our model was able to replicate 
several intuitive theoretical predictions that had not been 
coded directly [See Supplementary Data (SD2)]. Firstly, as 
expected (Elena et al. 1996; Sniegowski and Gerrish 2010), 
very small populations showed discontinuous staircase-like 
(stepwise) trajectories of fitness increase whereas large 
populations showed smooth adaptive trajectories (Fig. S1). 
Secondly, EoA trajectories showed diminishing returns with 
time despite never hitting the explicitly coded wall of adap-
tive limit (Fig. 2, 3, 4, 6, S2a, S3, S4a, S6, S7, and S8) (Len-
ski et al. 1991; Tenaillon et al. 2016). Thirdly, as expected, 
we found a non-monotonous relationship between EoA and 
mutation rate (Fig. S10c) (Orr 2000). Fourthly, EoA showed 
a positive but saturating relationship with N0 (which is an 
unambiguous measure of absolute population size) (Fig. 3a) 
(Gerrish and Lenski 1998; Sniegowski and Gerrish 2010). 
All this was highly unlikely if our model incorporated unre-
alistic or atypical assumptions. Furthermore, for numerically 
similar populations (i.e. populations with similar N0 and g) 
and identical time-frames, the results from our simulations 
were a very close match to the results of our experiments 
in terms of both K and R trajectories (Fig. S3). This again 
suggests that the IBM captures at least some features of the 
EoA of our E. coli populations. Finally, the EoA rank pre-
dictions generated for the three experimental populations 
based on our model agreed well with the empirical data 
(LL > SS > SL, Fig. 1). Therefore, it is reasonable to state 
that our model was generic and a good descriptor of evolving 
bacterial populations.

EoA Varies Negatively with g Because Higher g 
Makes Selection Less Effective

In order to explain why EoA varies negatively with g, we 
simulated populations with similar values of N0 (i.e., bot-
tleneck size) but different degrees of harshness of the bot-
tlenecks, namely SM1 (lenient bottleneck (= 1/10), g = 3.32) 
and SM4 (harsh bottleneck (= 1/104), g = 13.28) (Figs. 4, 5).

Our results demonstrate that higher g decreases the effi-
cacy of selection in terms of spreading beneficial mutations 
and purging deleterious ones (Fig. 5, also see Figs. S11 and 
S12). As shown in Fig. 5, very high-efficiency classes rise 
to very high frequencies in SM1 populations by generation 
80. However, such classes fail to do so in SM4 populations. 
Owing to lenient bottlenecks (lower g), selection operates 
so effectively in SM1 that its best efficiency class quickly 
converges with the modal class (Fig. S11b). This is also 
reflected by the proximity of the mean class with the modal 
class in SM1 (Fig. S11c). Thus, once a high-fitness class 
arises in an SM1 population, its rapid spread results in a 

steep increase in the population’s EoA. However, despite 
having the same bottleneck size (= N0) as SM1, SM4 popu-
lations exhibit a much slower rise in their EoA. This hap-
pens due to two reasons. As opposed to SM1, high-fitness 
genotypes in SM4 need to rise to much higher frequencies 
to survive the harsh periodic bottlenecks. This results in the 
removal (due to sampling) of several high-fitness classes 
from SM4 during the bottleneck (Fig. S12a). More impor-
tantly, the higher mutational supply rate of SM4 increases 
the genetic load (Fig. 5), which ultimately results in a much 
slower rise in the extent of adaptation of SM4.

Evolution of Carrying Capacity Can Feedback Into 
Adaptive Trajectories

Both our experiments and simulations showed that carry-
ing capacity (K) can evolve during adaptation in asexual 
microbes (Figs. 1a, 2a respectively), which is consistent with 
previous results (Novak et al. 2006). Unfortunately, most 
models of asexual adaptation do not take into account such 
adaptive changes in the carrying capacity (Campos and Wahl 
2009, 2010; Gerrish and Lenski 1998; Wahl and Gerrish 
2001). Most evolution experiments keep the bottleneck ratio 
(represented by g) constant (Kawecki et al. 2012; Lenski 
et al. 1991). This constancy of g ensures that any evolution-
ary change in carrying capacity would also change N0. In 
other words, if K increases, a constant value of g through-
out evolution would ensure an increase in N0. Since higher 
values of N0 accelerate adaptation (Fig. 3a), the regularity 
of bottlenecks introduces a positive feedback during evo-
lution if K increases adaptively. Stated differently, a larger 
value of N0 would make a population evolve higher K, which 
in turn would increase the next N0, and so on. We think 
that this aspect of fitness should not be omitted from theo-
retical models of how microbes evolve, particularly under 
resource-limited conditions, which are a common feature 
of experimental evolution protocols (Kawecki et al. 2012; 
Lenski et al. 1991).

N0/g is a Better Predictor of the Extent of Adaptation 
Than N0g

As shown in Figs. 3b, 4 and S7, when selection is at work, 
the extent of adaptation decreases with increasing g. This 
suggests that a population size measure which is an increas-
ing function of N0 but a decreasing function of g can be a 
better predictor of EoA than the conventional measure (N0g). 
For example, as shown in Fig. 6, we found that N0/g is a bet-
ter predictor of EoA than the harmonic mean size (= N0g). 
Admittedly, it is not possible to reason from this that the 
expression N0/g will always be a good predictor of EoA, 
and we make no such claims. We simply submit this expres-
sion as a potential candidate for this purpose and hope that 
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future theoretical work will be able to validate this empiri-
cally derived quantity.

Implications of Our Results

The adaptive dynamics of asexual populations depend on a 
delicate interplay of the rate at which variation is introduced 
in the population and the amount of variation lost periodi-
cally during bottlenecks. Luria and Delbrück (1943) showed 
that in periodically bottlenecked systems, each generation 
contributes equally to the total number of mutants, which, 
in turn, is proportional to N0(2g)µ. Furthermore, ignoring 
the competition between distinct mutations, the per-gener-
ation rate of production of the mutants that would eventu-
ally survive the bottleneck is proportional to (1/2g)N0(2g)µ 
(= N0µ). Thus, the only population size parameter that would 
determine the supply rate of mutations in the absence of 
mutational competition is N0. However, ignoring mutational 
competition inevitably overestimates the supply of variation 
in the population. Moreover, we have shown that populations 
with the same N0 can have starkly different adaptive trajec-
tories if they have different values of g, with the extent of 
adaptation varying negatively with g (Figs. 4, 5). If N0 is an 
overestimation of the mutational supply, N0g (the harmonic 
mean size) is an even bigger overestimate. Our finding that 
N0/g successfully predicts the adaptive trajectories of bot-
tlenecked populations can thus potentially correct for such 
overestimations in the supply rate of mutations. It is possible 
to think of other theoretical expressions that can also capture 
the observed relationships between N0 and EoA (positive) 
or g and EoA (negative). A detailed theoretical investiga-
tion of what is the correct expression that incorporates these 
relationships will be the logical next step, but is outside the 
scope of the current study.

Most theoretical studies assume that the final popula-
tion size attained in their study systems (Nf) is constant 
(Campos and Wahl 2009, 2010; Gerrish and Lenski 1998; 
Heffernan and Wahl 2002; Wahl et al. 2002; Wahl and 
Gerrish 2001). Interestingly, if the experimental popu-
lations that are being compared have similar values of 
Nf (Desai et al. 2007; Raynes et al. 2014; Vogwill et al. 
2016), then the populations with larger values of N0g 
will typically also have larger values of any quantity that 
is an increasing function of N0 but a decreasing func-
tion of g. This is because of two reasons. First, if Nf is 
held constant, since Nf = N02g, increasing N0 necessarily 
decreases g. Second, in most empirical studies, N0 ≫ g. 
Consequently, if Nf is assumed to be the same the popula-
tions being compared, any prediction based on the rela-
tive values of N0g will typically be similar to predictions 
based on N0/g (Fig. S15). However, whenever Nf is not 
held constant (e.g., Fig. 2, 3, 4, 6 and S14, and studies like 

Lachapelle et al. 2015; Ramsayer et al. 2013; Raynes et al. 
2014; Rozen et al. 2002; Samani and Bell 2010), N0/g pre-
dicts EoA much better than N0g. The above observations 
can explain why N0g has been widely used across several 
empirical studies despite failing to capture the effects of 
g on EoA accurately.

At very long time-scales, the high-fitness mutations 
accessible only to SM4 (but not to SM1) may end up sur-
viving a harsh periodic bottleneck. A post-facto analysis of 
our SM4 simulations shows that mutations of this kind rise 
to a frequency between 10−7 and 10−8 in a typical growth 
phase just prior to bottlenecks in SM4. Since N0 is close to 
103 in these populations, the above high-quality mutations 
would survive one bottleneck in every 104–105 growth 
phases which roughly amounts to 1.3 × 105–1.3 × 106 
generations. However, to this date, there are no reported 
experimental evolution studies over this long a time-span. 
Therefore, we conclude that the observation that increas-
ing g decreases EoA should be relevant for the time-scales 
most commonly employed in experimental evolution 
studies.

Our results can be used to compare the extents of adap-
tation in independent evolution experiments with similar 
environments but dissimilar demographic properties (dif-
ferences in terms of N0 and/or g and/or Nf). Such studies, 
which compare populations evolving in similar environ-
ments but with dissimilar demographic properties, are 
reasonably common in the field of experimental evolution 
(Desai et al. 2007; Lachapelle et al. 2015; Raynes et al. 
2014; Rozen et al. 2002; Samani and Bell 2010; Vogwill 
et al. 2016).

Our study shows that in serially bottlenecked asexual 
populations, the destructive aspect of bottlenecks (reduc-
tion in efficacy of selection by harsher bottlenecks) can 
overshadow their constructive aspect (increase in supply 
of variation in harsher bottlenecks). This calls for a change 
in perspective about periodic bottlenecks and a substantial 
re-evaluation of the role of population size as a predictor 
of adaptive evolution.
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